Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add filters








Language
Year range
1.
Braz. j. med. biol. res ; 49(11): e5238, 2016. graf
Article in English | LILACS | ID: lil-797893

ABSTRACT

Early nutrition plays a long-term role in the predisposition to chronic diseases and influences the metabolism of several drugs. This may happen through cytochromes P450 (CYPs) regulation, which are the main enzymes responsible for the metabolism of xenobiotics. Here, we analyzed the effects of maternal protein restriction (MPR) on the expression and activity of hepatic offspring’s CYPs during 90 days after birth, using Wistar rats as a mammal model. Hepatic CYP1A1, CYP1A2, CYP2B1, CYP2B2 and CYP2E1 mRNA and protein expression, and associated catalytic activities (ECOD, EROD, MROD, BROD, PROD and PNPH) were evaluated in 15-, 30-, 60-, and 90-day-old offspring from dams fed with either a 0% protein (MPR groups) or a standard diet (C groups) during the 10 first days of lactation. Results showed that most CYP genes were induced in 60- and 90-day-old MPR offspring. The inductions detected in MPR60 and MPR90 were of 5.0- and 2.0-fold (CYP1A2), 3.7- and 2.0-fold (CYP2B2) and 9.8- and 5.8– fold (CYP2E1), respectively, and a 3.8-fold increase of CYP2B1 in MPR90. No major alterations were detected in CYP protein expression. The most relevant CYP catalytic activities’ alterations were observed in EROD, BROD and PNPH. Nevertheless, they did not follow the same pattern observed for mRNA expression, except for an induction of EROD in MPR90 (3.5-fold) and of PNPH in MPR60 (2.2-fold). Together, these results suggest that MPR during lactation was capable of altering the expression and activity of the hepatic CYP enzymes evaluated in the offspring along development.


Subject(s)
Animals , Female , Rats , Cytochrome P-450 Enzyme System/metabolism , Diet, Protein-Restricted , Lactation/metabolism , Liver/enzymology , Aryl Hydrocarbon Hydroxylases/metabolism , Cytochrome P-450 CYP1A1/metabolism , Cytochrome P-450 CYP1A2/metabolism , Cytochrome P-450 CYP2B1/metabolism , Cytochrome P-450 CYP2E1/metabolism , Models, Animal , Rats, Wistar , Steroid Hydroxylases/metabolism , Time Factors
2.
Braz. j. med. biol. res ; 33(1): 103-9, Jan. 2000. tab
Article in English | LILACS | ID: lil-252263

ABSTRACT

Xenobiotic metabolism is influenced by a variety of physiological and environmental factors including pregnancy and nutritional status of the individual. Pregnancy has generally been reported to cause a depression of hepatic monooxygenase activities. Low-protein diets and protein-energy malnutrition have also been associated with a reduced activity of monooxygenases in nonpregnant animals. We investigated the combined effects of pregnancy and protein-energy malnutrition on liver monooxygenase O-dealkylation activity. On pregnancy day 0 rats were assigned at random to a group fed ad libitum (well-nourished, WN) or to a malnourished group (MN) which received half of the WN food intake (12 g/day). WN and MN rats were killed on days 0 (nonpregnant), 11 or 20 of pregnancy and ethoxy- (EROD), methoxy- (MROD) and penthoxy- (PROD) resorufin O-dealkylation activities were measured in liver microsomes. Only minor changes in enzyme activities were observed on pregnancy day 11, but a clear-cut reduction of monooxygenase activities (pmol resorufin min-1 mg protein-1) was noted near term (day 0 vs 20, means + or _ SD, Student t-test, P<0.05) in WN (EROD: 78.9 + or - 15.1 vs 54.6 + or - 10.2; MROD: 67.8 + or - 10.0 vs 40.9 + or - 7.2; PROD: 6.6 + or - 0.9 vs 4.3 + or - 0.8) and in MN (EROD: 89.2 + or - 23.9 vs 46.9 + or - 15.0; MROD: 66.8 + or - 13.8 vs 27.9 + or - 4.4; PROD: 6.3 + or - 1.0 vs 4.1 + or - 0.6) dams. On pregnancy day 20 MROD was lower in MN than in WN dams. Malnutrition did not increase the pregnancy-induced reduction of EROD and PROD activities. Thus, the present results suggest that the activities of liver monooxygenases are reduced in near-term pregnancy and that protein-energy malnutrition does not alter EROD or PROD in pregnant rats


Subject(s)
Rats , Animals , Female , Pregnancy , Cytochrome P-450 CYP1A1/metabolism , Cytochrome P-450 CYP2B1/metabolism , Microsomes, Liver/enzymology , Pregnancy Complications , Protein-Energy Malnutrition/enzymology , Analysis of Variance , Biotransformation , Organ Size , Rats, Wistar , Weight Gain , Xenobiotics/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL